A list of some papers

This is just a list of a few, relevant papers. For a full list of publications, please, check the research profiles of the members of the group.


  1. Salto, R., et al., New Red-Emitting Chloride-Sensitive Fluorescent Protein with Biological Uses. ACS Sensors, (2021) 6:2563-2573. DOI: 10.1021/acssensors.1c00094 
  2. Mañas-Torres, M. C., et al., In situ real-time monitoring of the mechanism of self-assembly of short peptide supramolecular polymers. Mater. Chem. Front., (2021) 5:5452-5462. DOI: 10.1039/D1QM00477HOpen access.
  3. Wittig, S., et al., Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes. Nature Communications, (2021). 12(1): p. 858. https://doi.org/10.1038/s41467-021-21102-w.
  4. Ripoll, C., et al., Chimeric Drug Design with a Noncharged Carrier for Mitochondrial Delivery. Pharmaceutics, (2021). 13(2): p. 254. https://www.mdpi.com/1999-4923/13/2/254.
  5. Pérez-Lara, Á., et al., Characterization of PROPPIN–Phosphoinositide Binding by Stopped-Flow Fluorescence Spectroscopy, in Phosphoinositides: Methods and Protocols, R.J. Botelho, Editor. (2021), Springer US: New York, NY. p. 205-214. https://doi.org/10.1007/978-1-0716-1142-5_15.
  6. Medel, M.A., et al., Octagon-embedded carbohelicene as chiral motif for CPL emission of saddle-helix nanographenes. Angew. Chem. Int. Ed, (2021). 60:6094-6100. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202015368.
  7. Meazza, M., et al., Studying the reactivity of alkyl substituted BODIPYs: first enantioselective addition of BODIPY to MBH carbonates. Chem. Sci., (2021). http://dx.doi.org/10.1039/D0SC06574A.
  8. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, (2021): p. 1-382. https://www.tandfonline.com/doi/abs/10.1080/15548627.2020.1797280.
  9. Cercós, P., et al., Pharmacological Approaches for the Modulation of the Potassium Channel KV4.x and KChIPs. Int. J. Mol. Sci., (2021). 22(3): p. 1419.


  1. Valverde-Pozo, J., et al., Detection by fluorescence microscopy of N-aminopeptidases in bacteria using an ICT sensor with multiphoton excitation: Usefulness for super-resolution microscopy. Sensor Actuat. B-Chem., (2020). 321: p. 128487. http://www.sciencedirect.com/science/article/pii/S0925400520308327.
  2. Ruiz-González, N., et al., Molecular and supramolecular recognition patterns in ternary copper(II) or zinc(II) complexes with selected rigid-planar chelators and a synthetic adenine-nucleoside. J. Inorg. Biochem., (2020). 203: p. 110920. http://www.sciencedirect.com/science/article/pii/S0162013419304866.
  3. Ruiz-Arias, Á., et al., Seeding and Growth of β-Amyloid Aggregates upon Interaction with Neuronal Cell Membranes. Int. J. Mol. Sci., (2020). 21(14): p. 5035. https://www.mdpi.com/1422-0067/21/14/5035.
  4. Ripoll, C., et al., Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. Int. J. Mol. Sci., (2020). 21(10): p. 3731. https://www.mdpi.com/1422-0067/21/10/3731.
  5. Reine, P., et al., Simple Perylene Diimide Cyclohexane Derivative With Combined CPL and TPA Properties. Front. Chem., (2020). 8(306). https://www.frontiersin.org/article/10.3389/fchem.2020.00306.
  6. Peyressatre, M., et al., Identification of Quinazolinone Analogs Targeting CDK5 Kinase Activity and Glioblastoma Cell Proliferation. Front. Chem., (2020). 8(691). https://www.frontiersin.org/article/10.3389/fchem.2020.00691.
  7. Herrero-Foncubierta, P., et al., Simple and non-charged long-lived fluorescent intracellular organelle trackers. Dyes and Pigments, (2020). 183: p. 108649. http://www.sciencedirect.com/science/article/pii/S0143720820313462.
  8. González-Vera, J.A., et al., Unusual spectroscopic and photophysical properties of solvatochromic BODIPY analogues of Prodan. Dyes and Pigments, (2020): p. 108510. http://www.sciencedirect.com/science/article/pii/S014372082030557X.
  9. Gonzalez-Garcia, M.C., et al., Orthogonal cell polarity imaging by multiparametric fluorescence microscopy. Sens. Actuator B-Chem., (2020). 309: p. 127770. http://www.sciencedirect.com/science/article/pii/S0925400520301179.
  10. Gonzalez-Garcia, M.C., et al., Building Accurate Intracellular Polarity Maps through Multiparametric Microscopy. Methods Protoc., (2020). 3(4): p. 78. https://www.mdpi.com/2409-9279/3/4/78.
  11. Fueyo-González, F., et al., Fluorescence mechanism switching from ICT to PET by substituent chemical manipulation: Macrophage cytoplasm imaging probes. Dyes and Pigments, (2020). 175: p. 108172. http://www.sciencedirect.com/science/article/pii/S0143720819324921.
  12. Fueyo-González, F., et al., Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish. ACS Sensors, (2020). 5: p. 2792-2799. https://doi.org/10.1021/acssensors.0c00587.
  13. Fueyo-González, F., et al., Smart lanthanide antennas for sensing water. Chem. Commun., (2020). 56: p. 5484-5487. http://dx.doi.org/10.1039/D0CC01725F.
  14. Fueyo-González, F., et al., Naphthalimide-based macrophage nucleus imaging probes. Eur. J. Med. Chem., (2020). 200: p. 112407. http://www.sciencedirect.com/science/article/pii/S0223523420303780.
  15. Denofrio, M.P., et al., N-Methyl-β-carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains. Org. Biomol. Chem., (2020). 18(33): p. 6519-6530. http://dx.doi.org/10.1039/D0OB01122C.


  1. Zhang, Q., et al., Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. J. Biol. Chem., (2019). 294: p. 4546-4571. http://www.jbc.org/content/early/2019/01/29/jbc.RA119.007421.abstractAuthor copy
  2. Ripoll, C., et al., A Quantum Dot-Based FLIM Glucose Nanosensor. Sensors, (2019). 19(22): p. 4992 (1-16). https://www.mdpi.com/1424-8220/19/22/4992.
  3. Resa, S., et al., Optically active Ag(i): o-OPE helicates using a single homochiral sulfoxide as chiral inducer. Org. Biomol. Chem., (2019). 17(36): p. 8425-8434. http://dx.doi.org/10.1039/C9OB01573F.
  4. Resa, S., et al., O–H and (CO)N–H bond weakening by coordination to Fe(II). Dalton Trans., (2019). http://dx.doi.org/10.1039/C8DT04689A.
  5. Reine, P., et al., Chiral double stapled o-OPEs with intense circularly polarized luminescence. Chem. Commun., (2019). 55(72): p. 10685-10688. http://dx.doi.org/10.1039/C9CC04885E.
  6. Puente-Muñoz, V., et al., New Thiol-Sensitive Dye Application for Measuring Oxidative Stress in Cell Cultures. Sci. Rep., (2019). 9(1): p. 1659. https://doi.org/10.1038/s41598-018-38132-y.
  7. Paredes, J.M., et al., Design, synthesis and photophysical studies of improved xanthene dye to detect acetate. J. Photochem. Photobiol. A Chem., (2019). 371: p. 300-305. http://www.sciencedirect.com/science/article/pii/S1010603018314606.
  8. Linares, F., et al., Multifunctional behavior of molecules comprising stacked cytosine–AgI–cytosine base pairs; towards conducting and photoluminescence silver-DNA nanowires. Chem. Sci., (2019). 10(4): p. 1126-1137. Edge Article. http://dx.doi.org/10.1039/C8SC04036B.
  9. Jurado, R., et al., Apoferritin Protein Amyloid Fibrils with Tunable Chirality and Polymorphism. J. Am. Chem. Soc., (2019). 141(4): p. 1606-1613. https://doi.org/10.1021/jacs.8b11418.
  10. Gonzalez-Garcia, M.C., et al., Coupled Excited-State Dynamics in N-Substituted 2-Methoxy-9-Acridones. Front. Chem., (2019). 7: p. 129 (1-13). https://www.frontiersin.org/article/10.3389/fchem.2019.00129.
  11. García-Rubiño, M.E., et al., Probing the effect of N-alkylation on the molecular recognition abilities of the major groove N7-binding site of purine ligands. J. Inorg. Biochem., (2019). 200: p. 110801. http://www.sciencedirect.com/science/article/pii/S0162013419303496.
  12. Garcia-Fernandez, E., et al., Time-Gated Luminescence Acquisition for Biochemical Sensing: miRNA Detection, in Fluorescence in Industry, B. Pedras, Editor. (2019), Springer International Publishing: Cham. p. 213-267. https://doi.org/10.1007/4243_2018_4.
  13. Garcia-Fernandez, E., et al., miR-122 direct detection in human serum by time-gated fluorescence imaging. Chem. Commun., (2019). 55(99): p. 14958-14961. http://dx.doi.org/10.1039/C9CC08069D.
  14. García Rubiño, M.E., et al., Phenformin as an Anticancer Agent: Challenges and Prospects. Int. J. Mol. Sci., (2019). 20(13): p. 3316. https://www.mdpi.com/1422-0067/20/13/3316.
  15. Espinar-Barranco, L., et al., Synthesis, Photophysics, and Solvatochromic Studies of an Aggregated-Induced-Emission Luminogen Useful in Bioimaging. Sensors, (2019). 19(22): p. 4932. https://www.mdpi.com/1424-8220/19/22/4932.
  16. Espinar-Barranco, L., et al., A solvatofluorochromic silicon-substituted xanthene dye useful in bioimaging. Dyes and Pigments, (2019). 168: p. 264-272.


  1. Ripoll, C., et al., Synthesis and Spectroscopy of Benzylamine-Substituted BODIPYs for Bioimaging. Eur. J. Org. Chem., (2018). 2018(20-21): p. 2561-2571. https://onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.201800083. Author copy.
  2. Resa, S., et al., Sulfoxide-Induced Homochiral Folding of ortho-Phenylene Ethynylenes (o-OPEs) by Silver(I) Templating: Structure and Chiroptical Properties. Chem. Eur. J., (2018). 24(11): p. 2653-2662. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201704897.
  3. Reiné, P., et al., OFF/ON switching of circularly polarized luminescence by oxophilic interaction of homochiral sulfoxide-containing o-OPEs with metal cations. Chem. Commun., (2018). 54(99): p. 13985-13988. http://dx.doi.org/10.1039/C8CC08395A.
  4. Reiné, P., et al., Exploring potentialities and limitations of stapled o-oligo(phenyleneethynylene)s (o-OPEs) as efficient circularly polarized luminescence emitters. Chirality, (2018). 30(1): p. 43-54. https://onlinelibrary.wiley.com/doi/abs/10.1002/chir.22774.
  5. Reiné, P., et al., Pyrene-Containing ortho-Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence. J. Org. Chem., (2018). 83(8): p. 4455-4463. https://doi.org/10.1021/acs.joc.8b00162.
  6. Pérez-Toro, I., et al., Copper(II) polyamine chelates as efficient receptors for acyclovir: syntheses, crystal structures and dft study. Polyhedron, (2018). 145: p. 218-226. http://www.sciencedirect.com/science/article/pii/S0277538718300780.
  7. Leary, E., et al., The Role of Oligomeric Gold–Thiolate Units in Single-Molecule Junctions of Thiol-Anchored Molecules. J. Phys. Chem. C, (2018). 122(6): p. 3211-3218. https://doi.org/10.1021/acs.jpcc.7b11104.
  8. Herrero-Foncubierta, P., et al., A Red-Emitting, Multidimensional Sensor for the Simultaneous Cellular Imaging of Biothiols and Phosphate Ions. Sensors, (2018). 18: p. 161. http://www.mdpi.com/1424-8220/18/1/161.
  9. Delgado-Gonzalez, A., et al., Metallofluorescent Nanoparticles for Multimodal Applications. ACS Omega, (2018). 3(1): p. 144-153. http://dx.doi.org/10.1021/acsomega.7b01984.
  10. Contreras-Montoya, R., et al., Iron nanoparticles-based supramolecular hydrogels to originate anisotropic hybrid materials with enhanced mechanical strength. Materials Chemistry Frontiers, (2018). 2(4): p. 686-699.


  1. Puente-Muñoz, V., et al., Efficient acetate sensor in biological media based on a selective Excited State Proton Transfer (ESPT) reaction. Sensor Actuat. B-Chem., (2017). 250: p. 623-628. http://www.sciencedirect.com/science/article/pii/S0925400517308080.
  2. Paulo, P.M.R., et al., Tip-Specific Functionalization of Gold Nanorods for Plasmonic Biosensing: Effect of Linker Chain Length. Langmuir, (2017). 33(26): p. 6503-6510. https://www.ncbi.nlm.nih.gov/pubmed/28592111.
  3. Ortega-Liebana, M.C., et al., Nitrogen-Induced Transformation of Vitamin C into Multifunctional Up-converting Carbon Nanodots in the Visible–NIR Range. Chem. Eur. J., (2017). 23(13): p. 3067-3073. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201604216.
  4. Marquez, I.R., et al., Versatile synthesis and enlargement of functionalized distorted heptagon-containing nanographenes. Chem. Sci., (2017). 8(2): p. 1068-1074.
  5. Gonzalez-Vera, J.A., et al., A new serotonin 5-HT6 receptor antagonist with procognitive activity – Importance of a halogen bond interaction to stabilize the binding. Sci. Rep., (2017). 7: p. 41293.
  6. González-Vera, J.A., et al., Lanthanide-based peptide biosensor to monitor CDK4/cyclin D kinase activity. Chem. Commun., (2017). 53(45): p. 6109-6112. http://dx.doi.org/10.1039/C6CC09948C.
  7. Castello, F., et al., Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates. Sci. Rep., (2017). 7: p. 40065. http://dx.doi.org/10.1038/srep40065.


  1. Paredes, J.M., et al., Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein. ACS Chem. Biol., (2016). 11(6): p. 1652-1660. https://doi.org/10.1021/acschembio.6b00103.
  2. Ortega-Liebana, M.C., et al., Nitrogen-Induced Transformation of Vitamin C into Multifunctional Up-converting Carbon Nanodots in the Visible–NIR Range. Chem. Eur. J., (2016). 23(13): p. 3067-3073. http://dx.doi.org/10.1002/chem.201604216.
  3. Orte, A., et al., Effect of the substitution position (2, 3 or 8) on the spectroscopic and photophysical properties of BODIPY dyes with a phenyl, styryl or phenylethynyl group. RSC Adv., (2016). 6(105): p. 102899-102913.
  4. Morcillo, S.P., et al., Stapled helical o-OPE foldamers as new circularly polarized luminescence emitters based on carbophilic interactions with Ag(I)-sensitivity. Chem. Sci., (2016). 7(9): p. 5663-5670.
  5. Jurado, R., et al., Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures. Nanoscale, (2016). 8(18): p. 9648-9656. http://dx.doi.org/10.1039/C6NR01044J.
  6. Gonzalez-Vera, J.A., et al., Highly solvatochromic and tunable fluorophores based on a 4,5-quinolimide scaffold: novel CDK5 probes. Chem. Commun., (2016). 52(62): p. 9652-9655.


  1. Tsytlonok, M., et al., Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape. Structure, (2015). 23(1): p. 190-198.
  2. Ruedas-Rama, M.J., et al., FLIM Strategies for Intracellular Sensing, in Advanced Photon Counting, P. Kapusta, M. Wahl, and R. Erdmann, Editors. (2015), Springer International Publishing. p. 191-223. http://dx.doi.org/10.1007/4243_2014_67.
  3. Ripoll, C., et al., Intracellular Zn2+ detection with quantum dot-based FLIM nanosensors. Chem. Commun., (2015). 51(95): p. 16964-16967. http://dx.doi.org/10.1039/C5CC06676J.
  4. Resa, S., et al., New Dual Fluorescent Probe for Simultaneous Biothiol and Phosphate Bioimaging. Chem. Eur. J., (2015). 21(42): p. 14772-14779. http://dx.doi.org/10.1002/chem.201502799.
  5. Miguel, D., et al., Development of a New Dual Polarity and Viscosity Probe Based on the Foldamer Concept. Org. Lett., (2015). 17(11): p. 2844-2847.
  6. Miguel, D., et al., Toward Multiple Conductance Pathways with Heterocycle-Based Oligo(phenyleneethynylene) Derivatives. J. Am. Chem. Soc., (2015). 137(43): p. 13818-13826. https://doi.org/10.1021/jacs.5b05637.
  7. Jiao, L., et al., Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes. RSC Adv., (2015). 5(109): p. 89375-89388. http://dx.doi.org/10.1039/C5RA17419H.
  8. Crovetto, L., et al., Photophysics of a Live-Cell-Marker, Red Silicon-Substituted Xanthene Dye. J. Phys. Chem. A, (2015). 119(44): p. 10854-10862. http://dx.doi.org/10.1021/acs.jpca.5b07898. Author copy
  9. Castello, F., et al., The First Step of Amyloidogenic Aggregation. J. Phys. Chem. B, (2015). 119(26): p. 8260-8267. http://dx.doi.org/10.1021/acs.jpcb.5b01957.


  1. Ruedas-Rama, M.J., et al., Interaction of YOYO-3 with Different DNA Templates to Form H-Aggregates. J. Phys. Chem. B, (2014). 118(23): p. 6098-6106.
  2. Ruedas-Rama, M.J., et al., pH sensitive quantum dot–anthraquinone nanoconjugates. Nanotechnology, (2014). 25: p. 195501.
  3. Martin-Lasanta, A., et al., Novel ortho-OPE metallofoldamers: binding-induced folding promoted by nucleating Ag(i)-alkyne interactions. Chem. Sci., (2014). 5(12): p. 4582-4591. http://dx.doi.org/10.1039/C4SC01988A.
  4. Martinez-Peragon, A., et al., Rational design of a new fluorescent ‘ON/OFF’ xanthene dye for phosphate detection in live cells. Org. Biomol. Chem., (2014). 12(33): p. 6432-6439. http://dx.doi.org/10.1039/C4OB00951G.
  5. Martínez-Peragón, A., et al., Synthesis and Photophysics of a New Family of Fluorescent 9-alkyl Substituted Xanthenones. Chem. A Eur. J., (2014). 20: p. 447-455.
  6. Lopez, S.G., et al., Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose. Photochemical & Photobiological Sciences, (2014). 13(9): p. 1311-1320.
  7. Boens, N., et al., 8-HaloBODIPYs and Their 8-(C, N, O, S) Substituted Analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations. J. Phys. Chem. A, (2014). 118(9): p. 1576-1594. http://dx.doi.org/10.1021/jp412132y.


  1. Salinas-Castillo, A., et al., Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun., (2013). 49(11): p. 1103-1105. http://dx.doi.org/10.1039/C2CC36450F.
  2. Ruedas-Rama, M.J., et al., Solving Single Biomolecules by Advanced FRET-Based Single-Molecule Fluorescence Techniques. Biophys. Rev. Lett., (2013). 08(03n04): p. 161-190. http://www.worldscientific.com/doi/abs/10.1142/S1793048013300041.
  3. Paredes, J.M., et al., Real-Time Phosphate Sensing in Living Cells using Fluorescence Lifetime Imaging Microscopy (FLIM). J. Phys. Chem. B, (2013). 117(27): p. 8143-8149. http://dx.doi.org/10.1021/jp405041c.
  4. Orte, A., et al., Fluorescence Lifetime Imaging Microscopy for the Detection of Intracellular pH with Quantum Dot Nanosensors. ACS Nano, (2013). 7(7): p. 6387-6395. http://dx.doi.org/10.1021/nn402581q.


  1. Ye, Y., et al., Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature, (2012). 492(7428): p. 266-270. http://dx.doi.org/10.1038/nature11722.
  2. Ruedas-Rama, M.J., et al., Fluorescent nanoparticles for intracellular sensing: A review. Anal. Chim. Acta, (2012). 751(0): p. 1-23. http://www.sciencedirect.com/science/article/pii/S0003267012013529.
  3. Ruedas-Rama, M.J., et al., A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging. Analyst, (2012). 137: p. 1500-1508. http://dx.doi.org/10.1039/C2AN15851E.
  4. Paredes, J.M., et al., Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions. Phys. Chem. Chem. Phys., (2012). 14(16): p. 5795-5800. http://dx.doi.org/10.1039/C2CP24058K.
  5. Paredes, J.M., et al., Early Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy. Int. J. Mol. Sci., (2012). 13(8): p. 9400-9418. http://www.mdpi.com/1422-0067/13/8/9400.
  6. Narayan, P., et al., The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β1−40 peptide. Nat. Struct. Mol. Biol., (2012). 19(1): p. 79-83. http://dx.doi.org/10.1038/nsmb.2191.
  7. Lopez, S.G., et al., Bulk and Single-Molecule Fluorescence Studies of the Saturation of the DNA Double Helix Using YOYO-3 Intercalator Dye. J. Phys. Chem. B, (2012). 116(38): p. 11561-11569. http://dx.doi.org/10.1021/jp303438d.
  8. Gonzalez-Vera, J.A., Probing the kinome in real time with fluorescent peptides. Chem. Soc. Rev., (2012). 41(5): p. 1652-1664.
  9. Cremades, N., et al., Direct Observation of the Interconversion of Normal and Toxic Forms of a-Synuclein. Cell, (2012). 149(5): p. 1048-1059. Link.
  10. Boens, N., et al., Visible Absorption and Fluorescence Spectroscopy of Conformationally Constrained, Annulated BODIPY Dyes. J. Phys. Chem. A, (2012). 116(39): p. 9621-9631. http://dx.doi.org/10.1021/jp305551w.


  1. Quantum dot photoluminescence lifetime-based pH nanosensor. M.J. Ruedas-Rama, A. Orte, E.A.H. Hall, J.M. Alvarez-Pez, E.M. Talavera. Chem. Commun. (2011), 47, 2898-2900.
  2. Influence of the solvent on the ground- and excited-state buffer-mediated proton-transfer reactions of a xanthenic dye. J.M. Paredes, L. Crovetto, A. Orte, J.M. Alvarez-Pez, E.M. Talavera. Phys. Chem. Chem. Phys. (2011), 13, 1685-1694.
  3. Dynamics of Water-in-Oil Nanoemulsions Revealed by Fluorescence Lifetime Correlation Spectroscopy. A. Orte, M.J. Ruedas-Rama, J.M. Paredes, L. Crovetto, J.M. Alvarez-Pez. Langmuir (2011), 27, 12792-12799.
  4. Single-Molecule Fluorescence Coincidence Spectroscopy and its Application to Resonance Energy Transfer. A. Orte,* R. W. Clarke, D. Klenerman. ChemPhysChem (2011), 12, 491-499. A review.


  1. Formation of Stable BOBO-3 H-Aggregate Complexes Hinders DNA Hybridization. M.J. Ruedas-Rama, J.M. Alvarez-Pez, A. Orte*. J. Phys. Chem. B. (2010), 114, 9063-9071.
  2. Similarity between the kinetic paramters of the buffer-mediated proton exchange reaction of a xanthenic derivative in its ground- and excited-state. J.M. Paredes, A. Orte, L. Crovetto, J.M. Alvarez-Pez, R. Rios, M.J. Ruedas-Rama, E.M. Talavera. Phys. Chem. Chem. Phys. (2010), 12, 323-327.
  3. RNA Conformation in Catalytically Active Human Telomerase. J.A. Yeoman, A. Orte, B. Ashbridge, D. Klenerman, S. Balasubramanian. J. Am. Chem. Soc. (2010), 132, 2852-2853.


  1. Single-Molecule Analysis of the Human Telomerase RNA·Dyskerin Interaction and the Effect of Dyskeratosis Congenita Mutations. B. Ashbridge, A. Orte, J.A. Yeoman, M. Kirwan, T. Vulliamy, I. Dokal, D. Klenerman, S. Balasubramanian. Biochemistry. (2009), 48, 10858-10865.
  2. Probing Neuroserpin Polymerization and Interaction with Amyloid-beta Peptides Using Single-Molecule Fluorescence. A. Chiou, P. Hagglof, A. Orte, A.Y. Chen, P.D. Dunne, D. Belorgey, S. Karlsson-Li, D.A. Lomas, D. Klenerman. Biophys. J. (2009), 97, 10858-10865.


  1. Evidence of an Intermediate and Parallel Pathways in Protein Unfolding from Single-Molecule Fluroescence. A. Orte, T.D. Craggs, S.S. White, S.E. Jackson, D. Klenerman. J. Am. Chem. Soc. (2008), 130, 7898-7907.
  2. Direct characterization of amyloidogenic oligomers by single-molecule fluroescence. A. Orte, N.R. Birkett, R.W. Clarke, G.L. Devlin, C.M. Dobson, D. Klenerman. Proc. Natl. Acad. Sci. U.S.A. (2008), 105, 14424-14429.
  3. Single-molecule analysis of human telomerase monomer. D. Alves, H. Li, R. Codrington, A. Orte, X. Ren, D. Klenerman, S. Balasubramanian. Nat. Chem. Biol. (2008), 4, 287-289.


  1. Determination of the Fraction and Stoichiometry of Femtomolar Levels of Biomolecular Complexes in an Excess of Monomer Using Single-Molecule, Two-Color Coincidence Detection. A. Orte, R.W. Clarke, S. Balasubramanian, D. Klenerman. Anal. Chem. (2006), 78, 7707-7715.


  1. Three-State 2′,7′-Difluorofluorescein Excited-State Proton Transfer Reactions in Moderately Acidic and Very Acidic Media. A. Orte, E.M. Talavera, A.L. MaÇanita, J.C. Orte, J.M. Alvarez-Pez. J. Phys. Chem. A. (2005), 109, 8705-8718.


  1. Fluorescent behavior of B-phycoerythrin in microemulsions of aerosol OT/water/isooctane. R. Bermejo, D.J. Tobaruela, E.M. Talavera, A. Orte, J.M. Alvarez-Pez. J. Colloid. Interf. Sci. (2003), 263, 616-624.