fibrils growing

  1. Fueyo-Gonzalez, F., et al., Self-Assembled Lanthanide Antenna Glutathione Sensor for the Study of Immune Cells. ACS Sensors, (2022) 7: p. 322-330. DOI: 10.1021/acssensors.1c02439Open access.
  2. Gonzalez-Garcia, M. C., et al., Dynamic Excimer (DYNEX) Imaging of Lipid Droplets. ACS Sensors, (2021) 6: p. 3632-3639. DOI: 10.1021/acssensors.1c01206. Inside coverOpen access.
  3. Ruiz-Arias, A., et al., A FRET pair for quantitative and superresolution imaging of amyloid fibril formation. Sensors and Actuators: B-Chemical, (2022) 350: p. 130882. DOI: 10.1016/j.snb.2021.130882Open access.
  4. Ruiz-Arias, A., et al., Selecting FRET pairs for visualizing amyloid fibril formation. Results in Chemistry, (2022) 4: p. 100275. DOI: 10.1016/j.rechem.2021.100275Open access.
  5. Fueyo-Gonzalez, F., et al., Quinolimide-based peptide biosensor for probing p25 in vitro and in living cells. Sensors and Actuators: B-Chemical, (2021) 339: p. 129929. DOI: 10.1016/j.snb.2021.129929Author copy.
  6. Gila-Vilchez, C., et al., Insights into the co-assemblies formed by different aromatic short-peptide amphiphiles. Polymer Chemistry, (2021) 12: p. 6832-6845. DOI: 10.1039/D1PY01366A. Selected as HOT ArticleOpen access.
  7. Lira-Navarrete, E., et al., Protein O-Fucosyltransferase 1 Undergoes Interdomain Flexibility in Solution. Molecules, (2021) 26: p. 2105. DOI: 10.3390/molecules26082105Open access.
  8. Cueto-Diaz, E.J., et al., Synthesis, biological, and photophysical studies of molecular rotor-based fluorescent inhibitors of the trypanosome alternative oxidase. Eur. J. Med. Chem., (2021) 220: p. 113470. DOI: 10.1016/j.ejmech.2021.113470Open access.
  9. Ripoll, C., et al., Breast Cancer Cell Subtypes Display Different Metabolic Phenotypes That Correlate with Their Clinical Classification. Biology, (2021) 10: p. 1267. DOI: 10.3390/biology10121267. Open access.
  10. Salto, R., et al., New Red-Emitting Chloride-Sensitive Fluorescent Protein with Biological Uses. ACS Sensors, (2021) 6:2563-2573. DOI: 10.1021/acssensors.1c00094Open access.
  11. Ripoll, C., et al., Chimeric Drug Design with a Noncharged Carrier for Mitochondrial Delivery. Pharmaceutics, (2021) 13(2): p. 254. DOI: 10.3390/pharmaceutics13020254. Open access.
  12. Mañas-Torres, M. C., et al., In situ real-time monitoring of the mechanism of self-assembly of short peptide supramolecular polymers. Mater. Chem. Front., (2021) 5:5452-5462. DOI: 10.1039/D1QM00477HOpen access.


  1. Denofrio, M.P., et al., N-Methyl-β-carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains. Org. Biomol. Chem., (2020). 18(33): p. 6519-6530. DOI: 10.1039/D0OB01122C. Journal coverOpen access.
  2. M. C. Gonzalez-Garcia et al. Technical Note: Building Accurate Intracellular Polarity Maps through Multiparametric Microscopy. Methods Protoc. (2020), 3, 78. DOI: 10.3390/mps3040078. Open access.
  3. F. Fueyo-Gonzalez et al. Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish. ACS Sensors (2020), 5, 2792-2799. DOI: 10.1021/acssensors.0c00587. Journal cover.
  4. Valverde-Pozo, J., et al., Detection by fluorescence microscopy of N-aminopeptidases in bacteria using an ICT sensor with multiphoton excitation: Usefulness for super-resolution microscopy. Sensor Actuat. B-Chem., (2020). 321: p. 128487. DOI: 10.1016/j.snb.2020.128487.
  5. P. Herrero-Foncubierta et al. Simple and non-charged long-lived fluorescent intracellular organelle trackersDyes and Pigments (2020), 183, 108649. DOI: 10.1016/j.dyepig.2020.108649.
  6. C. Ripoll et al. Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. Int. J. Mol. Sci. (2020), 21, 3731. DOI: 10.3390/ijms21103731. Open access.
  7. A. Ruiz-Arias et al. Seeding and Growth of β-Amyloid Aggregates upon Interaction with Neuronal Cell MembranesInt. J. Mol. Sci. (2020), 21, 5035. DOI: 10.3390/ijms21145035. Open access.
  8. M. C. Gonzalez-Garcia et al. Orthogonal cell polarity imaging by multiparametric fluorescence microscopy. Sensors Actuat. B Chem. (2020), 309, 127770. DOI: 10.1016/j.snb.2020.127770. Author copy at DIGIBUG.
  9. J. A. Gonzalez-Vera et al. Unusual spectroscopic and photophysical properties of solvatochromic BODIPY analogues of Prodan. Dyes and Pigments (2020), 182, 108510. DOI: 10.1016/j.dyepig.2020.108510.
  10. F. Fueyo-Gonzalez et al. Naphthalimide-based macrophage nucleus imaging probes. Eur. J. Med. Chem. (2020), 200, 112407. DOI: 10.1016/j.ejmech.2020.112407.
  11. F. Fueyo-Gonzalez et al. Smart lanthanide antennas for sensing water. Chem. Commun. (2020), 56, 5484-5487. DOI: 10.1039/D0CC01725F. Journal coverOpen access.
  12. F. Fueyo-Gonzalez et al. Fluorescence mechanism switching from ICT to PET by substituent chemical manipulation: Macrophage cytoplasm imaging probes. Dyes and Pigments (2020), 175, 108172. DOI: 10.1016/j.dyepig.2019.108172. Author copy at DIGIBUG.


  1. E. Garcia-Fernendez et al. miR-122 direct detection in human serum by time-gated fluorescence imaging. Chem. Commun. (2019), 55, 14958-14961. DOI: 10.1039/C9CC08069D. Open access.

  2. C. Ripoll et al. A Quantum Dot-Based FLIM Glucose Nanosensor. Sensors (2019), 19, 4992. DOI: 10.3390/s19224992. Open access.

  3. L. Espinar-Barranco et al. Synthesis, Photophysics, and Solvatochromic Studies of an Aggregated-Induced-Emission Luminogen Useful in BioimagingSensors (2019), 19, 4932. DOI: 10.3390/s19224932. Open access.

  4. E. Garcia-Fernandez et al. Time-Gated Luminescence Acquisition for Biochemical Sensing: miRNA Detection. Book chapter in B. Pedras (ed.), Fluorescence in Industry, Springer Ser. Fluoresc. (2019), 18, 213–268. Springer Nature Switzerland. DOI: 10.1007/4243_2018_4. Author copy at DIGIBUG.

  5. L. Espinar-Barranco et al. A solvatofluorochromic silicon-substituted xanthene dye useful in bioimaging. Dyes and Pigments (2019), 168, 264-272. DOI: 10.1016/j.dyepig.2019.04.024.

  6. M. C. Gonzalez-Garcia et al. Coupled Excited-State Dynamics in N-substituted 2-Methoxy-9-Acridones. Front. Chem. (2019), 7, 129. DOI: 10.3389/fchem.2019.00129. Open access.

  7. J. M. Paredes et al. Design, synthesis and photophysical studies of improved xanthene dye to detect acetate. J. Photochem. Photobiol. A (2019), 371, 300-305. DOI: 10.1016/j.jphotochem.2018.11.032. Author copy at preprints.org

  8. V. Puente-Muñoz et al. New Thiol-Sensitive Dye Application for Measuring Oxidative Stress in Cell Cultures. Sci. Rep. (2019) 9, 1659. DOI: 10.1038/s41598-018-38132-y. Open access.


  1. P. Herrero-Foncubierta et al. A Red-Emitting, Multidimensional Sensor for the Simultaneous Cellular Imaging of Biothiols and Phosphate IonsSensors (2018), 18, 161. DOI: 10.3390/s18010161. Open access.

The project CTQ2017–85658-R is funded by the Spanish Ministerio de Ciencia, Innovación y Universidades, the Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF).