La asociación tiempo-energía es recurrente en Física. Se dice que ambas magnitudes son conjugadas porque el principio de incertidumbre se puede re-escribir en términos de energía del paquete de ondas y la duración del mismo. Por otro lado, según el teorema de Noerthe, se conserva la energía (Hamiltoniano) de un sistema cuando éste es homogéneo en el tiempo, es decir, su acción mantiene el mismo valor antes y después y no existe un origen de tiempos. Del mismo modo que coordenada y momento son magnitudes conjugadas a través de las ecuaciones de Hamilton, la Lagrangiana (acción) y tiempo también lo son. Por otro lado, la entropía informa del flujo de energía en el sistema y con ello del tiempo. Por último, si se impone como adimensionales las cinco constantes fundamentales elegidas por la Oficina Internacional de Pesas y Medidas como referencias invariantes, las magnitudes fundamentales cuyas dimensiones cambian son: longitud, masa, intensidad de corriente eléctrica, temperatura termodinámica y cantidad de sustancia. En este contexto, la masa, la temperatura y la intensidad de corriente tienen dimensiones de inversa del tiempo lo que confirma la interpretación de estas magnitudes como flujos o paso del tiempo.
Bases vectoriales curvilíneas
En un espacio curvilíneo coordenado (u¹, u², u³) es posible definir dos bases vectoriales en el punto (q¹, q², q³):
- vectores tangentes a las líneas (u¹, cte, cte), (cte, u², cte), (cte, cte, u³) que concurren en (q¹, q², q³)
- vectores perpendiculares a los planos u¹=cte, u²=cte y u³=cte que se cortan en (q¹, q², q³)
Estos vectores no coinciden por lo general. A estas bases se las conoce como covariante y contravariante, respectivamente. Es posible normalizar estos vectores para que no tengan dimensiones físicas y se puedan usar para definir componentes vectoriales o tensoriales físicas. Para coordenadas ortogonales con bases ortonormales, las componentes covariante, contravariante y físicas son idénticas.
Posición y estado de movimiento de puntos materiales en sistemas complejos
La cinemática del Punto no coincide con la cinemática del Sólido Rígido. Es importante diferenciar el estado de movimiento de un punto geométrico del punto material que pase instantáneamente por el primero. En sistemas de partículas ligadas, como el sólido rígido, la velocidad instantánea del punto material no coincide con la del punto geométrico, salvo para el centro de masas o si el punto material está fijo/apoyado. Como ejemplo paradigmático de esta diferencia entre puntos geométricos y materiales, el Centro Instantáneo de Rotación es un punto geométrico (normalmente móvil) tal que si por él pasara un punto material solidario al sólido rígido, éste tendría instantáneamente velocidad nula.