Se sabe que para iniciar el movimiento desde una situación de equilibrio estable, hay que desplazar el objeto o impulsarlo convenientemente, o ambas condiciones iniciales. La solución física tendrá sentido entonces. Sin embargo, si la situación de partida es de equilibrio inestable, es posible el movimiento con condiciones iniciales nulas y la matemática así lo permite en la solución física. La controversia aparece a la hora de entender cómo esa singularidad matemática de apoyo (punto inestable) en la práctica se puede superar con la vibración ambiente o térmica, las imperfecciones del objeto, etc…
Efecto Coriolis como un cambio temporal y convectivo
El término de Coriolis (con un 2) que aparece en la aceleración relativa a un sistema de referencia en rotación se puede explicar por 2 efectos añadidos:
- Una velocidad constante «medida» por un observador no inercial que gira, cambia con el tiempo y en consecuencia «mide» una aceleración (local), que será negativa (con respecto al sentido del giro) y proporcional al producto de velocidad de giro y módulo de velocidad del móvil (cuanto más rápido se mueva el objeto y/o más rápido gire el observador no inercial, mayor aceleración)
- Si seguimos el móvil describiendo un MRU, su velocidad «medida» desde el observador no inercial cambia punto a punto. Tratándose ahora de una aceleración convectiva (gradiente modificado* de la velocidad). *: proyección del vector gradiente sobre el propio vector de velocidad (dimensiones de 1/tiempo).
El término de Coriolis captura la derivada total del campo de velocidades del móvil «medido» desde el observador no inercial, y que dependerá por lo general del tiempo y del espacio.
La aceleración convectiva del campo de velocidades se puede escribir como la suma de dos términos: el producto vectorial de la vorticidad por el campo de velocidades y la mitad del gradiente del cuadrado del campo de velocidades. Para el campo de velocidades de un sólido rígido, el primer término corresponde al efecto de Coriolis y el segundo a la aceleración centrífuga. Si se calcula el rotacional del campo de velocidades (vorticidad) de un cuerpo girando a velocidad constante se obtiene el doble de la velocidad de giro.
Cuando la caída sí depende de la inercia
En la dinámica del punto, la aceleración de un objeto en caída sobre un plano inclinado liso (caída constreñida, y no caída libre) resulta independiente de propiedades de la materia como la inercia. Galileo usó este comportamiento para modelar su ley de los graves. Sin embargo no es así para la caída de un sólido rígido rodante, donde la distribución de masa (inercia rotacional por unidad de masa) sí afecta a la aceleración y con ella al tiempo de caída. Si Galileo en sus experiencias pensadas o reales hubiera usado una esfera o un cilindro (de igual masa y radio) como graves…
A diferencia de la masa, cuya derivada es cero en sistemas de masa constante, la distribución de masa sí puede cambiar durante el giro por lo que tiene sentido derivar tensores o momentos de inercia.
Caída libre alrededor de un cilindro
La caída libre se caracteriza por una trayectoria rectilínea (en la dirección de la fuerza gravitatoria) y una aceleración tangencial constante (y normal nula). En un espacio cartesiano, la recta es la curva de mínima longitud entre dos puntos cualesquiera. Si el móvil estuviera confinado en la superficie de un cilindro vertical, la curva que une dos puntos cualesquiera del cilindro y con mínima longitud es la hélice (de ahí la peculiaridad de la máquina simple tornillo). La caída libre a través de la hélice se caracteriza por una aceleración angular constante y con ella, la proyección del móvil sobre el plano horizontal describe un movimiento circular de aceleración tangencial constante. La circunferencia degenera en una recta cuando el cilindro se abre. Encaja.
¿Tiempos cortos/largos?
En español, los adjetivos corto/largo hacen referencia habitualmente a longitud aunque también se entiende un intervalo de tiempo corto como breve y largo como prolongado. De la misma manera, la locución a la corta / a la larga se usa como más temprano / más tarde. En lenguaje científico, ¿cómo indicar de manera castiza que un tiempo (intervalo) es pequeño/grande? ¿Tiempo cercano/lejano? Los adverbios cerca/lejos son de lugar. Lo adecuado sería tiempo temprano/tardío, igual que usar lapso en vez de intervalo de tiempo. No se trata de alejar la Física de la sociedad, a través de un lenguaje rebuscado, sino de reflejar una vez más el rigor con el que la Física utiliza sus conceptos sin dar lugar a ambigüedades, utilizando la riqueza de la lengua española. Los adverbios despacio/deprisa o lento/rápido son de modo porque hacen referencia a la celeridad/ritmo, no al tiempo. De nuevo, la disociación velocidad/tiempo nos resulta difícil de superar [1].